Pringsheim's theorem for generalized continued fractions
نویسندگان
چکیده
منابع مشابه
Duke’s Theorem and Continued Fractions
For uniformly chosen random α ∈ [0, 1], it is known the probability the nth digit of the continued-fraction expansion, [α]n converges to the Gauss-Kuzmin distribution P([α]n = k) ≈ log2(1 + 1/k(k + 2)) as n → ∞. In this paper, we show the continued fraction digits of √ d, which are eventually periodic, also converge to the Gauss-Kuzmin distribution as d → ∞ with bounded class number, h(d). The ...
متن کاملGeneralized Continued Logarithms and Related Continued Fractions
We study continued logarithms as introduced by Bill Gosper and studied by J. Borwein et. al.. After providing an overview of the type I and type II generalizations of binary continued logarithms introduced by Borwein et. al., we focus on a new generalization to an arbitrary integer base b. We show that all of our so-called type III continued logarithms converge and all rational numbers have fin...
متن کاملContinued Fractions and Generalized Patterns
Babson and Steingrimsson (2000, Séminaire Lotharingien de Combinatoire, B44b, 18) introduced generalized permutation patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. Let fτ ;r (n) be the number of 1-3-2-avoiding permutations on n letters that contain exactly r occurrences of τ , where τ is a generalized pattern on k letters. Let Fτ ...
متن کاملVector continued fractions using a generalized inverse
A real vector space combined with an inverse (involution) for vectors is sufficient to define a vector continued fraction whose parameters consist of vector shifts and changes of scale. The choice of sign for different components of the vector inverse permits construction of vector analogues of the Jacobi continued fraction. These vector Jacobi fractions are related to vector and scalar-valued ...
متن کاملContinued Fractions, Statistics, And Generalized Patterns
Recently, Babson and Steingrimsson (see [BS]) introduced generalized permutations patterns that allow the requirement that two adjacent letters in a pattern must be adjacent in the permutation. Following [BCS], let ekπ (respectively; fkπ) be the number of the occurrences of the generalized pattern 12-3. . . -k (respectively; 21-3. . . -k) in π. In the present note, we study the distribution of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1986
ISSN: 0377-0427
DOI: 10.1016/0377-0427(86)90077-4